Hastening Alarm to Treatment Times

Literature Based Opportunities and Early Lessons from Strategies Implemented in Upstate NY

Chris Zammit, MD

Medical Director, Stroke and Neuroscience ICU, Good Samaritan Hospital, Comprehensive Stroke Center

Medical Director, Acute Neurologic Emergencies, TriHealth Hospital System

Objectives

- Understand the relationship between times to treatment and outcomes in acute ischemic stroke
- Understand strategies that hasten door to treatment times
- Understand strategies that hasten the identification and transfer of large vessel occlusions acute ischemic stroke
- Become familiar with prehospital strategies that hasten alarm to treatment times

Time Is Brain—Quantified

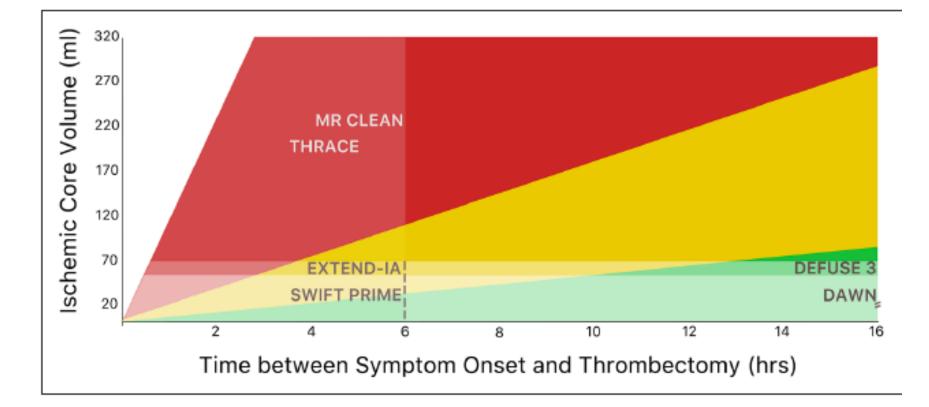
(Stroke 2006;37:263-266.)

Jeffrey L. Saver, MD

Estimated Pace of Neural Circuitry Loss in Typical Large Vessel, Supratentorial Acute Ischemic Stroke

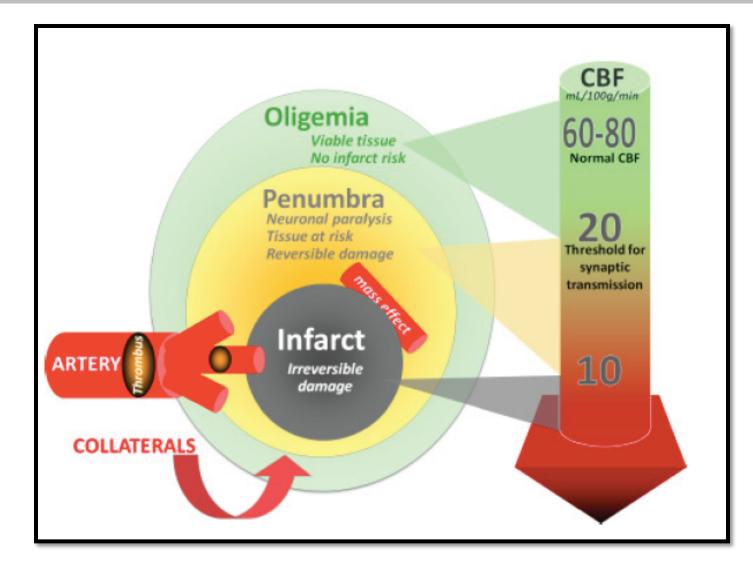
	Neurons Lost	Synapses Lost	Myelinated Fibers Lost	Accelerated Aging
Per Stroke	1.2 billion	8.3 trillion	7140 km/4470 miles	36 y
Per Hour	120 million	830 billion	714 km/447 miles	3.6 y
Per Minute	1.9 million	14 billion	12 km/7.5 miles	3.1 wk
Per Second	32 000	230 million	200 meters/218 yards	8.7 h

Analogy


Day	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
Rainfall	0"	7"	0"	0"	0"	0"	0"

Did it rain 1" per day during this week?

Of course not!



Different Rates of Stroke Progression

Stroke. 2018;49:768-771.

Eur Neurol 2014;72:309-316

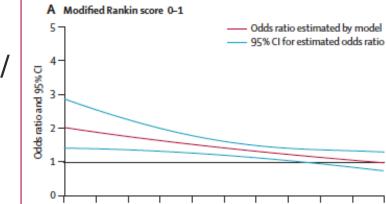
Reframing Time is Brain

- Brain cells die FAST without blood flow
- In some strokes, there is SOME blood flow, but not enough for the brain to function and not so little that it dies right away
 - The mechanisms that provide that sustaining blood flow fail over hours to days
- In other strokes, blood flow is immediately interrupted and the brain dies VERY quickly

Time to Treatment With Intravenous Tissue Plasminogen Activator JAMA, June 19, 2013—Vol 309, No. 23 and Outcome From Acute Ischemic Stroke

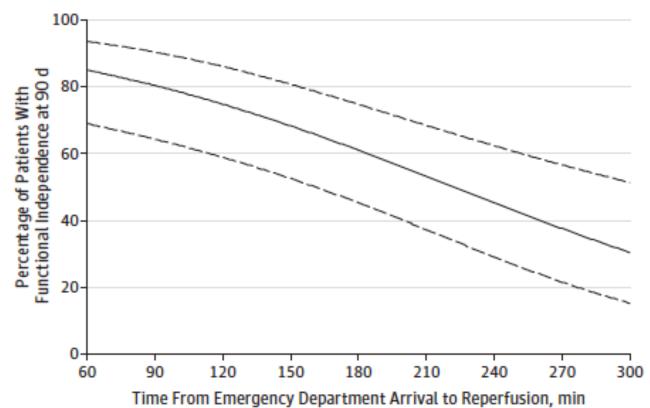
Lancet 2010; 375: 1695-703

Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials


"Faster onset to treatment, in <u>15-</u> minute increments, was associated w/

- reduced in-hospital mortality
- reduced symptomatic ICH
- increased achievement of

independent ambulation at discharge


• increased discharge to home."

Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis

A Functional independence (mRS 0-2) by time from emergency department arrival to actual substantial reperfusion

Saver, et al. JAMA. 2016;316(12):1279-1288.

iHealth

Door-to-Needle (DTN) Strategies

Target: Stroke Phase II Goals: 2014

- Primary Goal: Achieve Door-to-Needle Times within 60 minutes in 75% or more of acute ischemic stroke patients treated with IV tPA.
- Secondary Goal: Achieve Door-to-Needle times within 45 minutes in 50% or more of acute ischemic stroke patients treated with IV tPA.

Target: Stroke Phase III Goals: 2020 NATIONAL GOALS FOR PHASE III

PRIMARY GOALS

- Achieve door-to-needle times within 60 minutes in 85 percent or more of acute ischemic stroke patients treated with IV thrombolytics.
- Achieve door-to-device times (arrival to first pass of thrombectomy device) in 50% or more of eligible acute ischemic stroke patients within 90 minutes (for direct arriving patients) and within 60 minutes (for transfer patients) treated with endovascular therapy (EVT).

SECONDARY GOALS

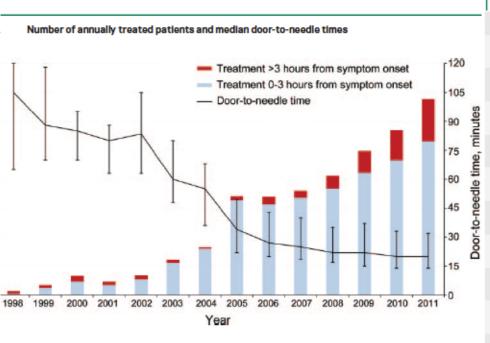
- Achieve door-to-needle times within 45 minutes in 75 percent or more of acute ischemic stroke patients treated with IV thrombolytics.
- Achieve door-to-needle times within 30 minutes in 50 percent or more of acute ischemic stroke patients treated with IV thrombolytics.

Target: Stroke Best Practices

- 1. EMS Pre-Notification
- 2. Stroke Tools: Decision Support, Order-sets, Guidelines, Protocols, NIHSS
- 3. Rapid Triage Protocol & Stroke Team Notification
- 4. Single Call Activation System
- 5. Timer or clock attached to chart, clip board or patient bed
- 6. Transfer Directly to CT Scanner
 - Quickly determine if NIHSS >/= 6; if so, concurrently perform CT angiography
- 7. Rapid Acquisition and Interpretation of Brain Imaging
- 8. Rapid Laboratory Testing (e.g. POC, procedures for lab prioritization)
- 9. Mix Alteplase Ahead of Time
- 10. Rapid Access and Administration of IV alteplase
 - " "The initial tPA bolus should be administered while the patient is on the CT table"
- 11. Team-Based Approach
- 12. Prompt Data Feedback

Who Needs Labs before Alteplase?

- "presence of medical conditions associated with coagulation disorders, including the presence of cancer, alcoholism, renal or liver failure or drug abuse."
- Those on warfarin



Highly Successful DTN Strategies

- Patient Registration Prior to Arrival to review medical records and pre-order tests
- Patient History Prior to Arrival via continuous EMS communication
- Emergency Provider focused training and directed treatment

Reducing in-hospital delay to 20 minutes in stroke thrombolysis

Table 1 Twelve measures to reduce treatment delays			
Measure	Description	Year	
EMS Involvement	Education of dispatchers and EMS personnel, stroke high-priority dispatch	1998	
Hospital prenotification	EMS contacts stroke physician directly via mobile phone	2001	
Alarm and preorder of tests	Laboratory and CT computer-ordered and alarmed at prenotification	2001	
No-delay CT Interpretation	Stroke physician interprets the CT scan, not waiting for formal radiology report	2001	
Premixing of tPA	With highly suspect thrombolysis candidates, tPA premixed prior to patient arrival	2002	
Delivery of tPA on CT table	Bolus administered on CT table	2002	
CT relocated to ER	Patient transfers of several hundred meters, including elevators, were no longer needed	2003	
CT priority and CT transfer	CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed	2004	
Rapid neurologic evaluation	Patient is examined upon arrival, on CT table	2004	
Preacquisition of history	Statewide electronic patient records and eyewitness interview before/during transportation	2005	
Point-of-care INR	Laboratory personnel draw blood while patient on CT table, and perform Instant POC INR	2005	
Reduced Imaging	While all patients have a CT, advanced imaging reserved for unclear cases only	2005	

Reducing in-hospital delay to 20 minutes in stroke thrombolysis

"However, the preliminary history relayed by the EMS, especially on symptom onset, was often not accurate, and reaching next of kin or eyewitnesses afterwards for treatment decisions was difficult. The treating stroke physician therefore requested communication with the primary informants over a mobile phone already at prenotification, during EMS contact on-scene, and preferably to have the next of kin cotransported by EMS to allow for rapid additional history taking when need arose. Such history taking during transport was complemented by accessing the provincewide electronic patient records prior to patient arrival."

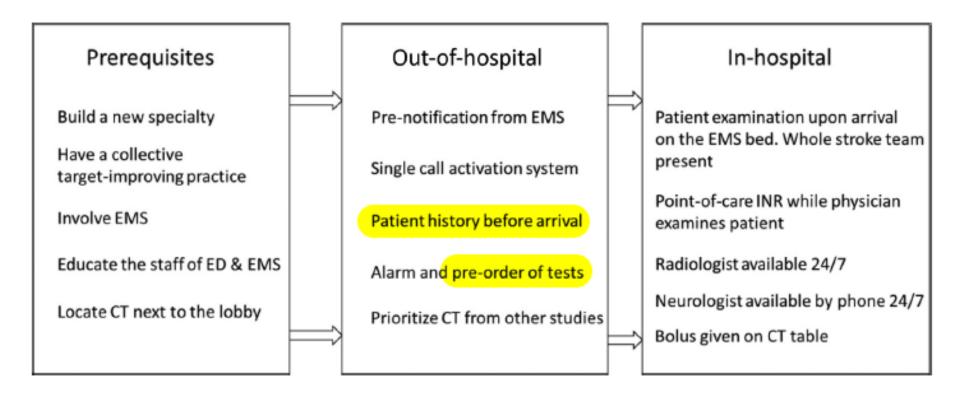
Fast Protocol for Treating Acute Ischemic Stroke by Emergency Physicians

liro Heikkilä, MD*; Hanna Kuusisto, MD, PhD; Markus Holmberg, MD; Ari Palomäki, MD, PhD

Results: A total of 107 patients with comparable data were treated with tissue plasminogen activator in 2009 to 2012 (group 1) and 46 patients were treated during 12 months in 2013 to 2014 (group 2). Median door-to-needle time was 54 minutes before the reorganization and 20 minutes after it (statistical estimate of difference 32 minutes; 95% confidence interval 26 to 38 minutes). After adjusting for several potential cofounders in multivariable regression analysis, the only factor contributing to a significant reduction in delay was group (after reorganization versus before). Median onset-to-treatment times were 135 and 119 minutes, respectively (statistical estimate of difference 2.5%; 95% confidence interval –8.7% to 9.2%). Approximately 70% of treated patients were functionally independent (modified Rankin Scale score 0 to 2) when treated after the reorganization.

Conclusion: Implementation of a stroke protocol with emergency physician-directed acute care decreased both door-to-needle time and onset-to-treatment time without increasing the rate of symptomatic intracerebral hemorrhage. [Ann Emerg Med. 2019;73:105-112.]

Fast Protocol


Emergency Physician Focused Training

- Training in the stroke unit at the neurology ward
- Theoretical teaching and practical training in diagnosing and treating patients with acute ischemic stroke
- Preparation with the electronic patient record after the prenotification given by EMS
- Shadowing of an experienced neurologist in acute neurologic emergencies
- Diagnosis and treatment of their own patients with clinical acute ischemic stroke, under the supervision of the specialist in the ED.
- Radiologists taught emergency physicians the evaluation of head computed tomography (CT) of patients with acute ischemic stroke.

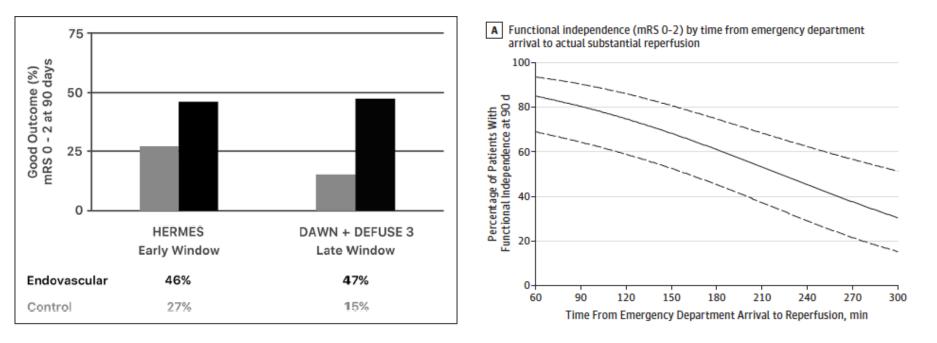
Fast Protocol

Performance Improvement and Process

Improved door-to-needle times and neurologic outcomes when IV tissue plasminogen activator is administered by emergency physicians with advanced neuroscience training $\overset{\wedge}{\sim}, \overset{\wedge}{\leftarrow} \overset{\wedge}{\leftarrow}$

Fellowship training	Contact hours
Neurologic ICU	24
Neuroradiology	24
Stroke unit	16
Cerebrovascular neurosurgical intervention	16
Annual neurologic CME	16
Annual attendance at dedicated neuroscience conference also required	

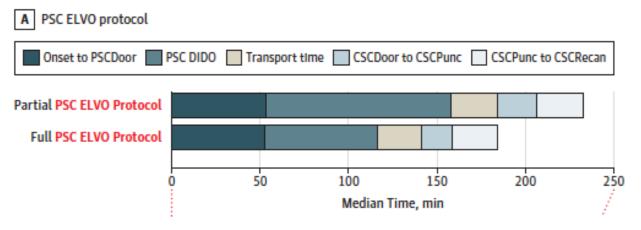
Advanced neuroscience training


DTN 83 min vs 35 min

Door-in Door-out (DIDO) for Large Vessel Occlusion (LVO) Acute Ischemic Strokes

Mechanical Thrombectomy Efficacy

Alberts, Stroke. 2018;49:768-771. Saver, et al. JAMA. 2016;316(12):1279-1288



Association of a Primary Stroke Center Protocol for Suspected Stroke by Large-Vessel Occlusion With Efficiency of Care and Patient Outcomes

Ryan A. McTaggart, MD; Shadi Yaghi, MD; Shawna M. Cutting, MD, MS; Morgan Hemendinger; Grayson L. Baird, PhD; Richard A. Haas, MD; Karen L. Furie, MD, MPH; Mahesh V. Jayaraman, MD

- 1. Notify the CSC on arrival
- 2. Perform computed tomographic angiography concurrently with non-contrast computed tomography of the brain and within 30 minutes of arrival
- 3. Share imaging data with the CSC using a cloud-based platform.

"When the protocol was fully executed, patients were twice as likely to have a favorable outcome (50% vs 25%, P < .04)."



Rhode Island (McTaggart, et al)

- 1212 sq miles
- ~1.05 million people

Rochester, NY Region

- Monroe County alone 1367 sq miles
- 14 more counties
- ~ 1.7 million people

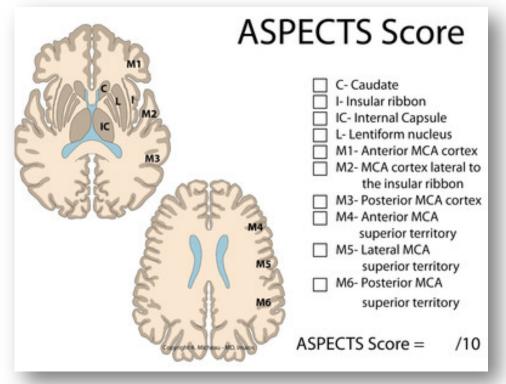
The University of Rochester Medical Center (URMC)

"Code LVO" Pathway

"Code LVO": Goals

- Identify all Acute Ischemic Strokes due to Large Vessel Occlusions in our region meeting AHA/ASA recommendations for endovascular treatment
- Allow patients with ischemic strokes to remain at their local community hospital when transfer to a CSC is unlikely to be of benefit
- Median DIDO time of 60 minutes
- Median OSH door to CSC Skin Puncture time of 120 minutes

"Code LVO" Qualifying Criteria

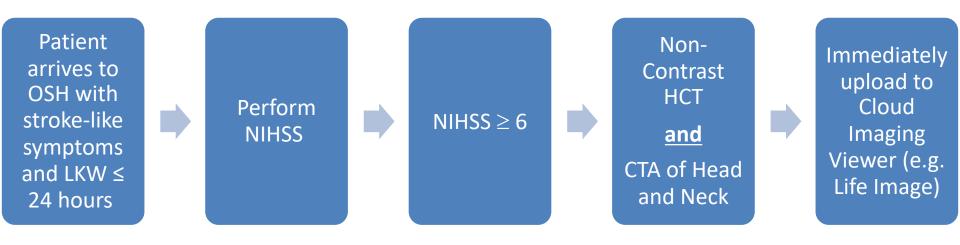

NIHSS ≥ 6

$\mathsf{ASPECTS} \geq \mathsf{6}$

Anterior Circulation LVO (ICA or Proximal MCA, i.e. M1)

ASPECTS: Alberta Stroke Program Early CT Score

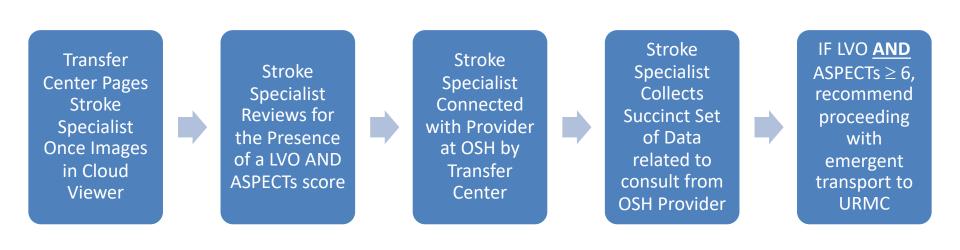
Look at all Cuts CT cuts at level of Basal Ganglia C/ IC/ L/ I M1/ M2/ M3


CT Cuts > 1 cm rostral to Basal Ganglia: M4/ M5/ M6

Lose 1 point for each area with EIC

http://www.aspectsinstroke.com/ Lancet 2000; **355**: 1670–74

"Code LVO": Identification


Code LVO: Parallel Processes

	 HCT and CTA of Head and Neck
$NIHSS \ge 10$	 Call Transfer Center and say "Code LVO at
	" and send face-sheet
	 Auto-Launch Transport (HEMS vs Ground)
	 Routine ED evaluation for IV tPA

Note: NIHSS 6-9 should have CTA done on arrival. If local read is LVO, Auto-Launch transport and Call Transfer center, as per above

"Code LVO": CSC Process

Information Obtained in Consult

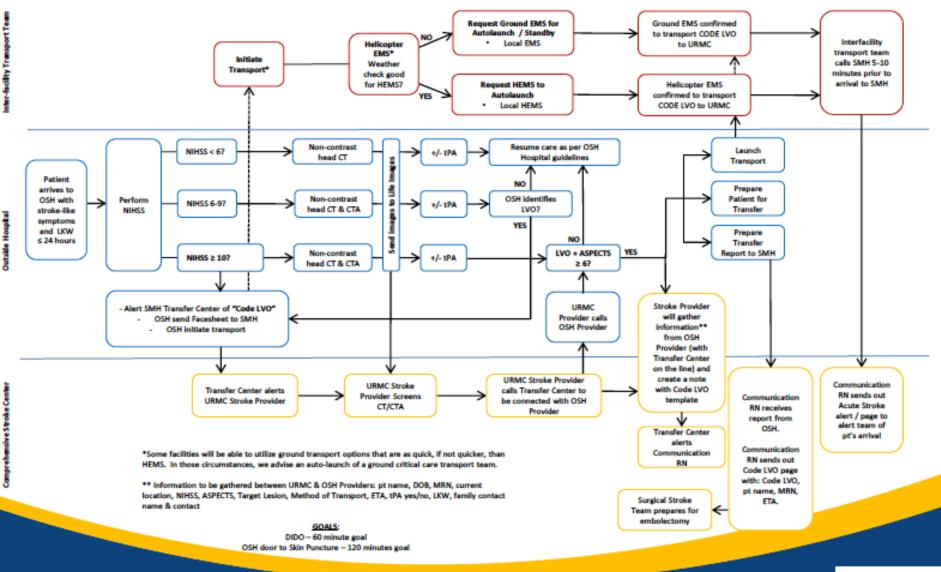
- NIHSS
- Method of Transport
- Anticoagulant Use + INR or Last Dose of Medication
- tPA yes/no
- LKWT
- Family contact name & phone number
- +/- Baseline Functional Status

CSC Process, Confirmed Transfer

- OSH RN -> URMC RN Report
- URMC sends "Code LVO" Page to
 - Mobilize the OR and NeuroICU
 - Provide notification to ED, Neurology, and NSGY of patient's ETA

"Code LVO" Results through 12/2018

Metric	Pre-Code LVO	Post-Code LVO	Absolute Diff
Hospital 1 Median DIDO	2:17	1:29	-0:48
Hospital 2 Median DIDO	2:07	1:43	-0:24
Hospital 3 Median DIDO	2:07	0:57	-1:10
Aggregate Median DIDO	2:10	1:20	-0:50
% DIDO < 60 minutes	1.1%	15.4%	+14.3%
Thrombectomy Attempt Rate	25.4%	53.9%	+29.5%
Mortality Rate	27.2%	16.7%	-10.5%



2018 "Code LVO" Results vs New York State

Metric	Code-LVO Hospitals	New York State	Difference
Median DIDO	1:20	2:10	- 0:50
% DIDO < 60 min	15.4%	3.7%	+11.7%

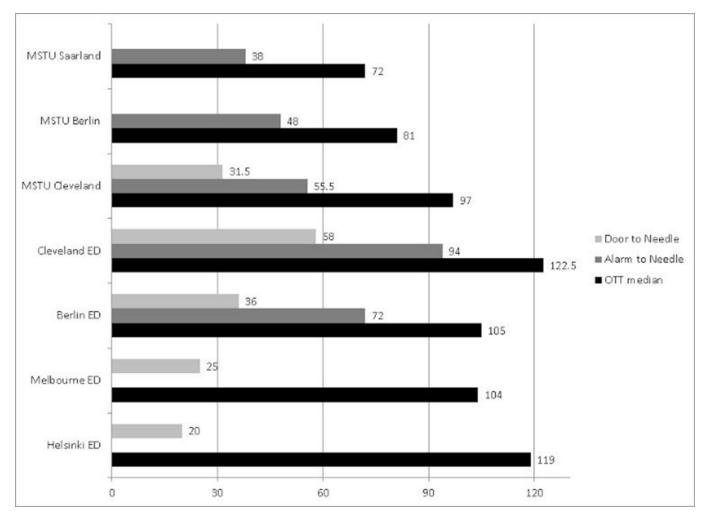
OUTSIDE HOSPITAL (OSH) - CODE LVO STROKE

For more information, please contact:

Sarah Gallagher, RN Regional Stroke Coordinator Comprehensive Stroke Center University of Rochester Medical Center 585-727-1649, Sarah_Gallagher@urmc.Rochester.edu

Comprehensive Strake Center

Code LVO Acknowledgements


- Regional ED nurses and physicians
- Regional Stroke directors, providers and coordinators
- Critical care transport teams
- URMC Transfer center
- URMC ED and ICU teams
- URMC Cerebrovascular team
 - Tarun Bhalla, MD PhD, Thomas Mattingly MD
- URMC Radiology/ IR
- URMC OR teams and Anesthesiology
- Sarah Gallagher, BS, RN, CCRN-K, SCRN, URMC regional stroke coordinator
- Diana Proper, MS, RT, URMC Neurosurgery Stroke Data Coordinator

MSU Programs Comparison Worldwide

JAMA Neurology | Original Investigation

Prehospital Stroke Management Optimized by Use of Clinical Scoring vs Mobile Stroke Unit for Triage of Patients With Stroke A Randomized Clinical Trial

RESULTS A predefined interim analysis was performed after 116 patients of the planned 232 patients had been enrolled. Of these, 53 were included in the OPM group (67.9% women; mean [SD] age, 74 [11] years) and 63 in the MSU group (57.1% women; mean [SD] age, 75 [11] years). The primary end point, an accurate triage decision, was reached for 37 of 53 patients (69.8%) in the OPM group and for 63 of 63 patients (100%) in the MSU group (difference, 30.2%; 95% CI, 17.8%-42.5%; *P* < .001). Whereas 7 of 17 OPM patients (41.2%) with LVO or ICH required secondary transfers from a PSC to a CSC, none of the 11 MSU patients (0%)

Emergency Department Door-to-Puncture Time Since 2014 Observations From the BEST-MSU Study

Alexandra L. Czap, MD; James C Grotta, MD; Stephanie A. Parker, RN; Jose-Miguel Yamal, PhD; (*Stroke*. 2019;50:1774-1780. DOI: 10.1161/STROKEAHA.119.025106.)

Door to Groin Puncture 10 minutes faster for MSU patients

URMC Hospital Treatment Case

- 86 y.o. male presented with R sided weakness, R facial droop and dysarthria.
- EMS with a pre-arrival notification that included CPSS, LKW.
- Stroke alert activated.
- On initial exam at SMH, the patient had a NIHSS of 12 for gaze palsy, right facial droop, right arm/leg weakness, left gaze preference, right field cut, and both aphasia and dysarthria.
- Head CT showed no hemorrhage.
- CTA showed a left M1 occlusion and proximal LICA occlusion.
- Determined to be a candidate for IV thrombolytic therapy.
- LOS 2 days, discharged to home, NIHSS 2.

Pre-arrival EMS call	- 28 min
Door to Stroke Alert	- 13 min
Door to MD	0 min
Door to CT	8 min
Door to tPA	18 min

Alarm to Treatment: 46 minutes

URMC MSU Case

09:00
09:07
09:10
09:12
09:28
09:30
09:32
09:33
09:35
09:37

Dispatch to Arrival	00:03
Arrival to MSU door	00:18
Door to CT	00:02
Dispatch to CT	00:23
Total Scene Time	00:25
Door to tPA	00:09
Dispatch to tPA	00:30

Alarm to Treatment: 30 minutes

Discharge NIHSS 0

Discharged home with PT services

URMC MSU Workflow

Thank you

